Paul Garrity, Ph.D.
Professor of Biology

Molecular basis of sensory transduction and behavior

B.A. Swarthmore College
Ph.D, Caltech
Postdoc's, Caltech & UCLA

contact information
lab website

Research Summary

We study the molecular basis of sensory transduction and behavior by investigating the molecular detectors and neural circuits that sense temperature and chemicals. We study thermal and chemical sensation because it allows us to address fundamental questions in neuroscience, molecular biology, biophysics, and evolution, while providing insights relevant to human health and the development of new technologies for controlling neuronal activity.

A major focus of the lab is on the molecules and neurons regulating thermal and chemical sensation in flies, emphasizing the ion channels involved in sensory transduction. These studies inform a second area of the lab, the development of "thermogenetic" tools for remote-control activation of neurons using temperature. Finally, we are investigating how thermal and chemical detectors have evolved and naturally vary in animals from insects to vertebrates.

Recent publications

L. Ni, P. Bronk, E.C. Chang, A.M. Lowell, V.C. Panzano, J.O. Flam, D.L. Theobald, L.C. Griffith, and P.A. Garrity. A gustatory receptor paralog controls rapid warmth avoidance in Drosophila. Nature 2013 Aug 29;500:580-584.

P. Sengupta and P.A. Garrity. Sensing temperature. Current Biology, 2013 Apr 22; 23:R304-R307.

K. Kang, V.C. Panzano, E.C. Chang, L. Ni, A.M. Dainis, A.M. Jenkins, K. Regna, M.A.T. Muskavitch and P.A. Garrity. Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature, 2011 Dec 4; 481: 76-80. PMC3272886

J. Bernstein, P.A. Garrity and E. Boyden. Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact circuits. Current Opinion in Neurobiology 2012 Feb; 22:61-71. PMC3292652

G.G. Neely, A.C. Keene, P. Duchek, E.C. Chang, Q.P. Wang, Y.A. Aksoy, M. Rosenzweig, M. Costigan, C.J. Woolf, P.A. Garrity and J.M. Penninger. TRPA1 regulates thermal nociception in Drosophila. PLoS One 2011; 6: e24343. PMC3164203

S. Lahiri, K. Shen, M. Klein, A. Tang, E. Kane, M. Gershow, P. Garrity and A.D.T. Samuel. A two-step program of motor dynamics mediates navigation in Drosophila larvae. PLoS One. 2011;6(8):e23180. PMC3156121

Garrity PA. Weakly acidic, but strongly irritating: TRPA1 and the activation of nociceptors by cytoplasmic acidification. J Gen Physiol. 2011 Jun;137(6):489-91.

Glauser DA, Chen WC, Agin R, Macinnis BL, Hellman AB, Garrity PA, Tan MW, Goodman MB. Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans. Genetics. 2011 May;188(1):91-103.

Garrity PA. Feel the light. Nature, 2010 Dec 16; 968, 900-901.

Neely CG, Hess A, Costigan M, Keene AC, Belfer I, Dai F, Gupta V, Xia C, Amann S, Kreitz S, Heindl-Erdmann C, Ly CV, Arora S, Sarangi R, Dan D, Novatchkova M, Rosenzweig M, Truong D, Schramek D,. Zoranovic T, Cronin SJF, Angjeli B, Brune K, Dietzl, . Pospisilik JA, Meixner A, Thomas W, Subramaniam S, Garrity PA, Bellen HJ, Woolf CJ, and Penninger JM. A genome-wide Drosophila pain screen identifies alpha2delta3 as an evolutionarily conserved pain gene. Cell, 2010 Nov 12; 143, 628-38.

Garrity PA, Goodman MB, Samuel AD, Sengupta P. Running hot and cold: behavioral strategies, neural circuits and the molecular machinery for thermotaxis in C. elegans and Drosophila. Genes and Development, 2010 Nov 1;24, 2365-2382.

Panzano VC, Kang K, and Garrity PA. Infrared snake eyes: TRPA1 and the thermal sensitivity of the snake pit organ. Science Signaling, 2010 Jun 22;3(127):pe22.

Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL and Garrity PA. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature, 2010 Mar 25;464, 597-600. (Minireview: L. Macpherson and A. Patapoutian. "Channels: Flies feel your pain", Nature Chemical Biology,2010; 6, 252-253; "On the hunt of what makes all of us recoil", Boston Globe).

Luo L, Gershow M, Fang-Yen C, Rosenzweig M, Kang K, Garrity PA*, and Samuel AD*. Navigational decision-making in Drosophila thermotaxis. J. Neuroscience, 2010 Mar 24;30, 4261-4272. (*joint corresponding authors)

Pulver SR, Pashkovski S, Hornstein NJ, Garrity PA, and Griffith LC. Temporal dynamics of neuronal activation by
Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. Journal of Neurophysiology, 2009 Jun;101, 3075-3088.

Dillon ME, Wang G, Garrity PA, and Huey RB. Thermal preference in Drosophila. Journal of Thermal Biology, 2009 Apr 1;34(3):109-119.

Parisky KM, Agosto J, Pulver SR, Shang Y, Kuklin E, Hodge JL, Kang K, Liu X, Garrity PA, Rosbash M and Griffith LC. PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron. 2008 Nov 26;60(4):672-82.

Rosenzweig M, Kang K, and Garrity PA. Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. PNAS, 2008 Sep 23;105, 14668-14673.  

Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, Garrity PA. An internal thermal sensor controlling temperature preference in Drosophila. Nature. 2008 Jul 10;454(7201):217-20.

Garrity PA. The role of adaptation in C. elegans thermotaxis. Focus on "Short-term adaptation and temporal processing in the cryophilic response of Caenorabditis elegans". J. Neurophysiology. 2007 Mar;97(3):1874-6.

Whited J, Robichaux M, Yang JC, and Garrity PA. PTPMEG is required for the proper establishment and maintenance of axon branches in the Drosophila central brain. Development, 2007 Jan;134, 43-53.

Khodosh R, Augsburger A, Schwarz TL, Garrity PA. Bchs, a BEACH domain protein, antagonizes Rab11 in synapse morphogenesis and other developmental events. Development, 2006 Dec;133,4655-65.

Garrity PA. Tinkers to Evers to Chance: Semaphorin signaling takes teamwork. Nature Neuroscience 2005 Dec;8,1635-1636.

Rosenzweig M, Brennan K, Tayler TD, Phelps PO, Patapoutian A, and Garrity PA. The Drosophila ortholog of TRPA1 regulates thermotaxis. Genes and Development 2005 Feb 15;19:419-424.

Tayler TD, Robichaux M, and Garrity PA. Compartmentalization of visual centers in the Drosophila brain requires Slit and Robo proteins. Development 2004 Dec;131:5935-5945.

Whited J, Cassell A, Broulliette M, and Garrity PA. Dynactin is required to maintain nuclear position within post-mitotic photoreceptor neurons. Development 2004 Oct;131:4677-4686.

Garrity PA. How neurons avoid derailment. Nature 2003 Apr 10;422, 570-571.

Sears HC, Kennedy CJ, and Garrity PA. Macrophage-mediated corpse engulfment is required for normal Drosophila CNS morphogenesis. Development 2003 Aug; 130: 3557-3565.

Tayler T, Garrity PA. Axon targeting in the Drosophila visual system. Curr. Opinion Neurobiology 2003 Feb;13, 90-95.

Whited J and Garrity PA. Specifying axon identity with Syd-1. Nature Neuroscience. 2002 Nov; 5,1107-1108.

Rosenzweig M and Garrity PA. Axon targeting meets protein trafficking: Comm takes Robo to the cleaners. Dev. Cell 2002 Sep;3, 301-302.


Last review: May 5, 2014

 

 
415 South Street, Waltham, MA 02453 (781) 736-2000