Melissa Kosinski-Collins, Ph.D.
Associate Professor of Biology
Science Education and Protein Biochemistry

B.S., University of Massachusetts, Amherst
Ph.D. Massachusetts Institute of Technology

Contact Information

Although, I received my Ph.D from MIT in 2004 for studying protein folding and aggregation, my true passion has always been in biology teaching and education and I have always recognized the importance of mentoring and inspiring young scientists. I was an education research post doc for two years in the HHMI Education Group at MIT and focused primarily on biological education research and the importance of concept-based teaching and learning in biology. To continue to meet this end, I currently serve as the Editor-in-chief of the Atlas Journal of Science Education.

I recognized the need for better biological preparation at the high school level and am actively involved in several secondary education efforts. I was a faculty advisor to the United States Biology Olympiad Team involved in exam preparation, student advising and instruction. I have also worked as the MRSEC Director for Outreach, Education and Diversity here at Brandeis.  In this position, I counseled area high school biology teachers in methods to incorporate college level molecular biology, biophysics, and chemical biology labs into their classrooms, led high school field trips to Brandeis research facilities and coordinated outreach activities at the Discovery Museum in Acton.

In light of my interest in protein structure, I am studying the importance of learning and manipulation of biological macromolecules in 3-dimensions. I am part of a collaboration with the Biology, Physics, and Academic Computing Departments at MIT to create a free, scalable 3D visualization software engine that may easily be manipulated by students, but has the flexibility and functionality to be used by advance protein biochemists. This program is currently used by undergraduates in introductory biology and I hope to further incorporate it into our K12 outreach effort in connection to the Robbins Family 3D classroom here on campus.

I am currently the academic coordinator for the Brandeis Science POSSE program and summer bootcamp.  Each year, 10 talented graduating seniors from New York City intending on pursing science degrees are selected to attend Brandeis as a cohort.  In advance of their matriculation to campus, they spend two weeks of the summer in an intense training program experiencing labs, lectures, and assignments that model Brandeis coursework.  I facilitate this program and work with the Science Posse students throughout their academic careers here at Brandeis.

On campus, I am teaching the introductory biology lab course and a graduate level molecular biology course. I have renovated the undergraduate laboratory curriculum into a project-based series of experiments encompassing such topics as Huntington’s treatment, cataract stability, and fly models of colon cancer.  I have also developed a teaching internship, Ed92a, which provides a forum for interested students to read about, discuss and critique new pedagogical develops in biology education.


Boltax, A., Pontrello, J. and Kosinski-Collins, M.S. (2016). “Exploring the Science-Society Interface With a Bridging Research Course.” J. College Sci. Teach. 45: 50-57.

Boltax AL, Armanious S, Kosinski-Collins MS and Pontrello JK (2015). "Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project." Biochem Mol Biol Educ 43(4): 233-244.

Setty S and Kosinski-Collins MS (2015). "A Model Inquiry-Based Genetics Experiment for Introductory Biology Students: Screening for Enhancers & Suppressors of Ptpmeg." American Biology Teacher 77(1): 41-47.

Setty S, Kosinski-Collins MS (2012). "The Harry Potter Box: Demonstrating the Importance of Challenging Assumptions during the Scientific Process." American Biology Teacher 74(8): 587-588.

Treacy D, Kosinski-Collins MS (2011). “Using the writing and revising of journal article-style lab reports to increase science literacy and understanding in a large introductory biology laboratory course.” J. Sci. Educ.  1: 29-37.

Treacy D, Sankaran S, Gordon-Messer S, Saly D, Miller R, Isaac RS, & Kosinski-Collins MS (2010).  “The implementation of a project–based molecular biology laboratory emphasizing protein structure-function relationships into a large introductory biology laboratory course.” C.B.E. Life Sci. Educ. 10: 18-24.

Romm IK, Gordon-Messer S, Kosinski-Collins MS (2010). "Educating Young Educators Pedagogical Internship for Undergraduate Teaching Assistants." C.B.E. Life Sci. Educ. 9: 80-86.

Gordon-Messer S,.Kosinski-Collins MS (2010). "Using scientific purposes to improve student writing and understanding in undergraduate biology project-based laboratories."  American Biol. Teach.  9: 578-579.

Kosinski-Collins, MS (2007). “Navigating the molecular universe in 3D: Teaching biology students protein structure-function relationships using StarBiochem.” RSCB PDB Newsletter. 35: 5-6.

Mills IA, Flaugh SL, Kosinski-Collins MS, King JA (2007). "Folding and stability of the isolated Greek key domains of the long-lived human lens proteins gammaD-crystallin and gammaS-crystallin." Protein Sci. 2007 Nov;16(11):2427-44.

Flaugh SL, Kosinski-Collins MS, King J. "Interdomain side-chain interactions in human gammaD crystallin influencing folding and stability." (2005). Protein Sci. 2005 Aug;14(8):2030-43.

Flaugh SL, Kosinski-Collins MS, King J (2005). "Contributions of hydrophobic domain interface interactions to the folding and stability of human gammaD-crystallin." Protein Sci. 2005 Mar;14(3):569-81.

Flaugh SL, Kosinski-Collins MS, King JA (2005). "The role of the hydrophilic interface residues in folding and aggregation of human gammaD crystallin." Protein Sci. 14: 2030-2043.

Flaugh, S.L., Kosinski-Collins, M.S., & King JA (2005). "The role of the hydrophobic interface residues in folding and stability of human gammaD crystallin." Protein Sci. 14: 569-581.

Kosinski-Collins MS, Flaugh SL, King J. (2004) "Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins." Protein Science. 13: 2223-35.

Kosinski-Collins MS, King JA (2003). "In vitro unfolding, refolding, and polymerization of human gammaD crystallin, a protein involved in cataract formation." Protein Sci. 12: 480-90.


Last review: May 1, 2017



415 South Street, Waltham, MA 02453 (781) 736-2000