Publications

2017 up-arrow-25w

2016 up-arrow-25w
  • Five suggestions for substantial NIH reforms. Rosbash M. Elife. 2016 Dec 14;5.
  • Genome-wide identification of neuronal activity-regulated genes in Drosophila. Chen X, Rahman R, Guo F, Rosbash M. Elife. 2016 Dec 9;5.
  • Circadian neuron feedback controls the Drosophila sleep-activity profile. Guo, F, Yu, J, Jung, HJ, Abruzzi, KC, Luo, W, Griffith, L, and Rosbash, M. Nature. 2016, 536:292-297.
  • Age-Related Reduction of Recovery Sleep and Arousal Threshold in Drosophila. Vienne, J, Spann, R, Guo, F, and Rosbash, M. Sleep.2016, 39(8):1613-1624.
  • Promiscuous or discriminating: Has the favored mRNA target of Fragile X Mental Retardation Protein been overlooked?. McMahon, AC, and Rosbash, M. Proc.Natl.Acad.Sci.U.S.A. 2016, 113(26):7009-7011.
  • mir-276a strengthens Drosophila circadian rhythms by regulating timeless expression. Chen X, and Rosbash, M. Proc. Natl. Acad. Sci. U.S.A. 2016, 113(21):E2965-72.
  • TRIBE: Hijacking an RNA-Editing Enzyme to Identify Cell-Specific Targets of RNA-Binding Proteins. McMahon, A, Rahman, R, Jin, H, Shen, JL, Fieldsend, A, Luo, W, and Rosbash, M. Cell. 2016 165, 742-753.

2015 up-arrow-25w
  • Clk post-transcriptional control denoises circadian transcription both temporally and spatially. Lerner I, Bartok O, Wolfson V, Menet JS, Weissbein U, Afik S, Haimovich D, Gafni C, Friedman N, Rosbash M, Kadener S. Nat Commun. 2015 May 8;6:7056.
  • We’ll always have RNA. Rosbash M. RNA. 2015 Apr;21(4):546-7.
  • RNA-seq profiling of small numbers of Drosophila neurons. Abruzzi K, Chen X, Nagoshi E, Zadina A, Rosbash M. Methods Enzymol. 2015;551:369-86.
  • Genome-wide features of neuroendocrine regulation in Drosophila by the basic helix-loop-helix transcription factor DIMMED. Hadzic T, Park D, Abruzzi KC, Yang L, Trigg JS, Rohs R, Rosbash M, Taghert PH. Nucleic Acids Res. 2015 Feb 27;43(4):2199-215.

2014 up-arrow-25w
  • PDF neuron firing phase-shifts key circadian activity neurons in Drosophila. Guo F, Cerullo I, Chen X, Rosbash M. Elife. June 17:e02780.
  • PDF and cAMP enhance PER stability in Drosophila clock neurons. Li, Y., Guo, F., Shen, J., Rosbash, M. Proc.Natl.Acad.Sci.U.S.A. 111:E1284-90.
    CLOCK:BMAL1 is a pioneer-like transcription factor. Menet, J.S., Pescatore, S., Rosbash, M. Genes Dev. 28:8-13.

2013 up-arrow-25w
  • A rapid MALDI-TOF mass spectrometry workflow for Drosophila melanogaster differential neuropeptidomics. Salisbury, J.P., Boggio K.J., Hsu, Y.W., Quijada, J., Sivachenko, A., Gloeckner, G., Kowalski, P.J., Easterling, M.L., Rosbash, M., Agar, J.N. Molecular Brain. 6:60.
  • Short neuropeptide F is a sleep-promoting inhibitory modulator. Shang, Y., Donelson, N.C., Vecsey, C.G., Guo, F., Rosbash, M., Griffith, L.C. Neuron 80:171-83.
  • The transcription factor Mef2 links the Drosophila core clock to Fas2, neuronal morphology, and circadian behavior. Sivachenko, A., Li, Y., Abruzzi, K.C., Rosbash, M. Neuron 79:281092.
  • Accelerated degradation of perS protein provides insight into light-mediated phase shifting. Li, Y., Rosbash, M. J. Biol. Rhythms. 28:171-82.
  • Transposition-driven genomic heterogeneit in the Drosophila brain. Perrat, P.N., DasGupta, S., Wang, J., Theurkauf, W., Weng, Z., Rosbash, M., Waddell, S. Science. 340:91-5.
  • Nascent-Seq analysis of Drosophila cycling gene expression. Rodriguez, J., Tang, C.H., Khodor, Y.L., Vodala, S., Menet, J.S., Rosbash, M. Proc.Natl.Acad.Sci.U.S.A. 110:E275-84.

2012 up-arrow-25w
  • CLOCK deubiquitylation by USP8 inhibits CLK/CYC transcription in Drosophila. Luo, W., Tang, C.H., Abruzzi, K.C., Rodriguez, J., Pescatore, S., Rosbash, M. Genes Dev. 26:2536-2549.
  • Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. Menet, J.S., Rodriguez, J., Abruzzi, K.C., Rosbash, M. eLife. 1:e00011.
  • The Oscillating miRNA 959-964 Cluster Impacts Drosophila Feeding Time and Other Circadian Outputs. Vodala, S., Pescatore, S., Rodriguez, J., Buescher, M., Chen, Y.W., Weng, R., Cohen, S.M., Rosbash, M. Cell Metab. 16:601-612.
  • Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse. Khodor, Y.L., Menet, J.S., Tolan, M., Rosbash, M. RNA. 18:2174-2186.
  • NAT1/DAP5/p97 and Atypical Translational Control in the Drosophila Circadian Oscillator. Bradley, S., Narayanan, S., Rosbash, M. Genetics. 192:943-957.
  • Autoreceptor Control of Peptide/Neurotransmitter Corelease from PDF Neurons Determines Allocation of Circadian Activity in Drosophila. Choi, C., Cao, G., Tanenhaus, A.K., McCarthy, E.V., Jung. M., Schleyer, W., Shang, Y., Rosbash, M., Yin, J.C., Nitabach, M. N. Cell Rep. 2:332-344 [pdf]
  • Nascent-seq indicates widespread cotranscriptional RNA editing in Drosophila. Rodriguez, J., Menet, J.S., Rosbash, M. Mol Cell. 47:27-37.

2011 up-arrow-25w
  • Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Khodor, Y.L., Rodriguez, J., Abruzzi, K.C., Tang, C.H., Marr, M.T. II, Rosbash, M. Genes Dev. 25:2502-2512.
  • Drosophila CLOCK Target Gene Characterization: Implications for Circadian Tissue-Specific Gene Expression. Abruzzi, K.C., Rodriguez, J., Menet, J.S., Desrochers, J., Zadina, A., Luo, W., Tkachev, S., Rosbash, M. Genes Dev. 25:2374-2386.
  • When brain clocks lose track of time: cause or consequence of neuropsychiatric disorders. Menet, J.S., Rosbash M. Curr Opin Neurobiol. 2011 Dec;21(6):849-57.
  • Molecular Organization of Drosophila Neuroendocrine Cells by Dimmed. Park, D., Hadžic, T., Yin, P., Rusch, J., Abruzzi, K.C., Rosbash, M., Skeath, J.B., Panda, S., Sweedler, J.V., Taghert, P.H. Curr. Biol. 21:1515-1524. [pdf]
  • A new twist on clock protein phosphorylation: A conformational change leads to protein degradation. Menet, J.S., Rosbash, M. Mol Cell. 43:695-697.
  • A threat to medical innovation. Rosbash, M. Science. 333:136.
  • Imaging analysis of clock neurons: light buffers the wake-promoting effect of dopamine. Shang, Y., Haynes, P., Pírez, N., Harrington, K., Guo, F., Pollack, J., Hong, P., Griffith, L.C., Rosbash, M. Nat. Neurosci. 14:889-895.

2010 up-arrow-25w
  • Genome-wide analysis of light and temperature-entrained circadian transcripts in C. elegans. van der Linden A.M., Beverly, M., Kadener, S., Rodriguez, J., Wasserman, S., Rosbash, M., Sengupta, P. PLoS Biology. 8:e1000503.
  • Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila. Kula-Eversole, E., Nagoshi, E., Shang, Y., Rodriguez, J., Allada, R., Rosbash, M. PNAS. Jul 12.
  • Light-mediated TIM degradation within Drosophila pacemaker neurons (s-LNvs) is neither necessary nor sufficient for delay zone phase shifts. Tang, C.H., Hinteregger, E., Shang, Y., Rosbash, M. Neuron. 66:378-385.
  • Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA. Menet, J.S., Abruzz,i K.C., Desrochers, J., Rodriguez, J., Rosbash, M. Genes Dev. 24:358-367.
  • Dissecting differential gene expression within the circadian neuronal circuit of Drosophila. Nagoshi, E., Sugino, K., Kula, E., Okazaki, E., Tachibana, T., Nelson, S., Rosbash, M. Nat Neurosci.13:60-68.

2009 up-arrow-25w
  • A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses. Dubruille, R., Murad, A., Rosbash, M., Emery, P. PLoS Genet. 5(12).
  • A role for microRNAs in the Drosophila circadian clock. Kadener, S., Menet, J.S., Sugino, K., Horwich, M.D., Weissbein, U., Nawathean, P., Vagin, V.V., Zamore, P.D., Nelson, S.B., Rosbash, M. Genes Dev. 23:2179-2191.
  • A targeted bypass screen identifies Ynl187p, Prp42p, Snu71p, and Cbp80p for stable U1 snRNP/Pre-mRNA interaction. Hage, R., Tung, L., Du, H., Stands, L., Rosbash, M., Chang, T.H. MCB. 29:3941-3952.
  • Genome-wide identification of targets of the drosha-pasha/DGCR8 complex. Kadener, S., Rodriguez, J., Abruzzi, K.C., Khodor, Y.L., Sugino, K., Marr, M.T. II, Nelson, S., Rosbash, M. RNA. 15:537-545.
  • The implications of multiple circadian clock origins. Rosbash, M. PLoS Biol. 7:e62.

2008 up-arrow-25w
  • Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Shang, Y., Griffith, L.C., Rosbash, M. PNAS. 105:19587-19594.
  • PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Parisky, K.M., Agosto, J., Pulver, S.R., Shang, Y., Kuklin, E., Hodge, J.J., Kang, K., Liu, X., Garrity, P.A., Rosbash, M., Griffith, L.C. Neuron. 60:672-682.
  • The nuclear exosome and adenylation regulate posttranscriptional tethering of yeast GAL genes to the nuclear periphery. Vodala, S., Abruzzi, K.C., Rosbash, M. Mol Cell. 31:104-113.
  • Circadian transcription contributes to core period determination in Drosophila. Kadener, S., Menet, J.S., Schoer, R., Rosbash, M. PLoS Biology. 6:e119.
  • Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Agosto, J., Choi, J.C., Parisky, K.M., Stilwell, G., Rosbash, M., Griffith, L.C. Nat Neurosci. 11:354-9.
  • Sleep: hitting the reset button. Griffith, L.C., Rosbash, M. Nat Neurosci. 11:123-124.
  • Sus1, Sac3, and Thp1 mediate post-transcriptional tethering of active genes to the nuclear rim as well as to non-nascent mRNP. Chekanova, J.A., Abruzzi, K.C., Rosbash, M., Belostotsky, D.A. RNA. 14:66-77.

2007 up-arrow-25w
  • Transcriptional feedback and definition of the circadian pacemaker in Drosophila and animals. Rosbash, M., Bradley, S., Kadener, S., Li, Y., Luo, W., Menet, J.S., Nagoshi, E., Palm, K., Schoer, R., Shang, Y., Tang, C.H. Cold Spring Harb Symp Quant Biol.72:75-83.
  • Protein characterization of Saccharomyces cerevisiae RNA polymerase II after in vivo cross-linking. Tardiff, D.F., Abruzzi, K.C., Rosbash, M. PNAS. 104:19948-19953.
  • Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component. Kadener, S., Stoleru, D., McDonald, M., Nawathean, P., Rosbash, M. Genes Dev. 21:1675-1686.
  • A small conserved domain of Drosophila PERIOD is important for circadian phosphorylation, nuclear localization and transcriptional repressor activity. Nawathean, P., Stoleru, D., Rosbash, M. MCB. 27:5002-5013.
  • PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila. Kaushik, R., Nawathean, P., Busza, A., Murad, A., Emery, P., Rosbash, M. PLoS Biology. 5:e146.
  • The Drosophila circadian neuronal network is a seasonal timer. Stoleru, D., Nawathean, P., de la Paz Fernandez, M., Menet, J.S., Fernanda Ceriani, M., Rosbash, M. Cell. 27:207-219.
  • A novel plasmid based microarray screen identifies suppressors of rrp6{delta} in Saccharomyces cerevisiae. Abruzzi, K., Denome, S., Olsen, J.R., Assenholt, J., Haaning, L.L., Jensen, T.H., Rosbash, M. MCB. 27:1044-1055.

2006 up-arrow-25w
  • A genome wide analysis indicates that yeast pre-mRNA splicing is predominantly post-transcriptional. Tardiff, D.F., Lacadie, S.A., Rosbash, M. Mol Cell. 24:917-929.
  • 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. Abruzzi, K.C., Belostotsky, D.A., Chekanova, J.A., Dower, K., Rosbash, M. EMBO. 25:4253-62.
  • Neurotoxic protein expression reveals connections between the circadian clock and mating behavior in Drosophila. Kadener, S., Villella, A., Kula, E., Palm, K., Pyza, E., Botas, J., Hall, J.C., Rosbash, M. PNAS. 103:13537-13542.
  • In vivo commitment to yeast cotranscriptional splicing is sensitive to transcriptional elongation mutants. Lacadie, S.A., Tardiff, D.F., Kadener, S., Rosbash, M. Genes Dev. 20:2055-2066.
  • Arrested yeast splicing complexes indicate stepwise snRNP recruitment during in vivo spliceosome assembly. Tardiff, D.F., Rosbash, M. RNA 12:968-979.
  • PDF cycling in the dorsal protocerebrum of the Drosophila brain is not necessary for circadian clock function. Kula, E., Levitan, E.S., Pyza, E., Rosbash, M. J Biol Rhythms. 21:104-117.

2005 up-arrow-25w
  • A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Stoleru, D., Peng, Y., Nawathean, P., Rosbash, M. Nature 438:238-242.
  • Co-transcriptional spliceosome assembly dynamics and the role of U1 snRNA:5’ss base pairing in yeast. Lacadie, S.A. and Rosbash, M. Mol Cell 19:65-75.
  • PERIOD1-associated proteins modulate the negative limb of the mammalian circadian clock. Brown, S.A., Ripperger, J., Kadener, S., Fleury-Olela, F., Vilbois, F., Rosbash, M., Schibler, U. Science 308:693-6.
  • Assaying the Drosophila negative feedback loop with RNAi in S2 cells. Nawathean, P., Menet, J.S., Rosbash, M. Methods In Enzymology, 393:610-622.

2004 up-arrow-25w
  • A synthetic A tail rescues yeast nuclear accumulation of a ribozyme-terminated transcript. Dower, K., Kupperwasser, N., Merrikh, H., Rosbash, M. RNA 10:1888-1899.
  • NMD does not occur within the yeast nucleus. Kuperwasser, N., Brogna, S., Dower, K., Rosbash, M. RNA 10: 1907-1915.
  • Coupled oscillators control morning and evening locomotor activity behavior of Drosophila. Stoleru, D., Peng, Y., Agosto, J., Rosbash, M. Nature 431:862-868.
  • Effects of the U1C L13 Mutation and Temperature Regulation of Yeast Commitment Complex Formation. Du, H., Tardiff, D.F., Moore, M.J., Rosbash, M. PNAS 101:14841-14846.
  • Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. Abruzzi, K.C., Lacadie, S., Rosbash, M. EMBO J 23:2620–2631.
  • Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Busza, A., Emery-Le, M., Rosbash, M., Emery, P. Science 304:1503-1506.
  • The doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity. Nawathean, P. and Rosbash, M. Mol Cell 13:213-223.

2003 up-arrow-25w
  • The Co-evolution of Blue-Light Photoreception and Circadian Rhythms. Ghering, W.and Rosbash, M. J Mol Evol. 57:S286-S289.
  • Drosophila free-running rhythms require intercellular communication. Peng, Y., Stoleru, D., Levine, J.D., Hall, J.C., Rosbash, M. PLoS 1:32-40.
  • Localization of nuclear retained mRNAs in Saccharomyces cerevisiae. Thomsen, R., Libri, D., Boulay, J., Rosbash, M., Heick Jensen, T. RNA 9:1049-1057.
  • A recessive mutant of Drosophila Clock reveals a role in circadian rhythm amplitude. Allada, R., Kadener, S., Nandakumar, N., Rosbash, M. EMBO J 22:3367-3375.
  • Circadian rhythms in Drosophila. Rosbash, M., Allada, R., McDonald, M., Peng, Y., Zhao, J. Novartis Foundation Symposium 253: Molecular Clocks and Light Signalling (eds. Chadwick DJ, and Goode JA), 223-237. John Wiley & Sons Ltd., Chichester, UK.
  • Drosophila Clock can generate ectopic circadian clocks. Zhao, J., Kilman, V., Keegan, K., Peng, Y., Emery, P., Rosbash, M., Allada, R. Cell 113:755-766.
  • Early formation of mRNP: License for export or quality control. Heick Jensen, T., Dower, K., Libri, D., Rosbash, M. Cell 11:1129-1138.
  • A biological clock. Rosbash, M. Daedalus 132:27-36.
  • Co-transcriptional monitoring of mRNP formation. Heick Jensen, T. and Rosbash, M. Nature Structural Biology 10:10-12.

2002 up-arrow-25w
  • Circadian Rhythms: The cancer connnection. Rosbash, M. and Takakashi, J.S. Nature 420: 373-374.
  • A role for casein kinase 2a in the Drosophila circadian clock. Lin, J.M., Kilman, V.L., Keegan, K., Paddock, B., Emery-Le, M., Rosbash, M., Allada, R. Nature 420(6917):816-20.
  • Interactions between mRNA export commitment, 3′ -end quality control and nuclear degradation. Libri, D., Dower, K., Boulay, J., Thomsen, R., Rosbash, M., Jensen, T.H. MCB 22:8254-8266.
  • The U1 snRNP protein U1C recognizes the 5′ splice site in the absence of base pairing. Du, H. and Rosbash, M. Nature 149:86-92.
  • Ribosomes components are associated with sites of transcription. Brogna, S., Sato, T.A., Rosbash, M. Mol. Cell 10: 93-104.
  • Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. Shafer, O.T., Allada, R., Rosbash, M., Truman, J.W. J Neurosci. 22: 5946-5954.
  • Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation. Kadener, S., Fededa, J.P., Rosbash, M., Kornblihtt, A.R. PNAS 99:8185-8190.
  • T7 RNA polymerase-directed transcripts are processed in yeast and link 3′ end formation to mRNA nuclear export. Dower, K. and Rosbash, M. RNA 8:686-697.

2001 up-arrow-25w
  • Microarray analysis and organization of circadian gene expression in Drosophila. McDonald, M. and Rosbash, M. Cell 107:567-578.
  • Cell Biology: TAPping into mRNA Export. Moore, M.J. and Rosbash, M. Science 294:1841-1842.
  • The DECD-box putative ATPase Sub2p is an early mRNA export factor. Heick Jensen, T., Boulay, J., Rosbash, M., Libri, D. Current Biol. 11:1711-1715.
  • Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Hilleren, P., McCarthy, T., Rosbash, M., Parker, R., Heick Jensen, T. Nature 413:538-542.
  • Stopping Time: The Genetics of Fly and Mouse Circadian Rhythms. Allada, R., Emery, P., Takahashi, J.S., Rosbash, M. Ann. Rev. Neurosci. 24:1091-1119.
  • Recognition of RNA branchpoint sequences by SF1/mBBP in a splicing factor complex. Peled-Zehavi, Z., Berglund, J.A., Rosbash, M., Frankel, A.D. MCB 21:5232-5241.
  • Crystal structure of a model branchpoint – U2 snRNA duplex containing bulged adenosines. Berglund, J.A., Rosbash, M., Schultz, S.C. RNA 7:682-691.
  • A block to mRNA nuclear export in S. cerevisiae leads to hyperadenylation of transcripts that accumulate at the site of transcription. Heick Jensen, T., Patricio, K., McCarthy, T., Rosbash, M. Mol.Cell 7:887-898.
  • Fly Clocks: The Molecular Genetics of Circadian Rhythms. Allada, R. and Rosbash, M. Genetic Models in Cardiorespiratory Biology (eds. Haddad, G.G., and Tian, X.), pp.365-390. Marcel Dekker, Inc., New York, NY.
  • A Biochemical Function for the Sm Complex. Zhang, D., Abovich, N., Rosbash, M. Mol. Cell 7:319-329.
  • Yeast U1 snRNP-pre-mRNA complex formation without U1 snRNP-pre-mRNA base pairing. Du, H., and Rosbash, M. RNA 7:133-142.
  • Wild-type circadian rhythmicity is dependent on closely spaced E-boxes in the Drosophila timeless promoter. McDonald, M., Rosbash, M., Emery, P. MCB 21:1207-1217.

2000 up-arrow-25w
  • A common core RNP structure shared between the small nucleolar box C/D RNPs and the spliceosomal U4 snRNP. Watkins, N.J., Segauly, V., Charpentier, B., Nottrott, S., Fabrizio, P., Bachi, A., Wilm, M., Rosbash, M., Branlant, C., Luhrmann, R. Cell 103:457-466.
  • Identification of novel Saccharomyces cerevisiae proteins with nuclear export activity: Cell cycle-regulated transcription factor Ace2p shows cell cycle-independent nucleocytoplasmic shuttling. Heick Jensen, T,, Neville, M., Rain, J.C., McCarthy, T., Legrain, P., Rosbash, M. MCB 20:8047-8058.
  • Two novel doubletime mutants alter circadian properties and eliminate the delay between RNA and protein in Drosophila. Suri, V., Hall, J., Rosbash, M. J Neurosci. 20:7547-7555.
  • takeout, a novel Drosophila gene under circadian clock transcriptional regulation. So, W.V., Sarov-Blat, L., Kotarski, C.K., McDonald, M.J., Allada, R., Rosbash, M. MCB 20:6935-6944.
  • The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Sarov-Blat, L., So, W.V., Liu, L., Rosbash, M. Cell 101:647-656.
  • Drosophila CRY is a deep brain circadian photoreceptor. Emery, P., Stanewsky, R., Helfrich-Forster, C., Emery-Le, M., Hall, J.C., Rosbash, M. Neuron 26:493-504.
  • Nuclear export of heat shock and non-heat-shock mRNA occurs via similar pathways. Vainberg, I.E., Dower, K., Rosbash, M. MCB 20:3996-4005.
  • A unique circadian-rhythm photoreceptor. Emery, P., Stanewsky, R., Hall, J.C., Rosbash, M. Nature 404:456-457.
  • Splicing enhancement in the yeast rp51b intron. Libri, D., Lescure, A., Rosbash, M. RNA 6:352-368.
  • Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Park, J.H., Helfrich-Forster, C., Lee, G., Liu, L., Rosbash, M., Hall, J.C. PNAS 97:3608-3613.

1999up-arrow-25w
  • A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Renn, S.C., Park, J.H., Rosbash, M., Hall, J.C., Taghert, P.H. Cell 99:791-802.
  • The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr255p. Strahm, Y., Fahrenkrog, B., Zenklusen, D., Rychner, E., Kantor, J., Rosbash, M., Stutz, F. EMBO J 18:5761-5777.
  • The NES-Crm1p export pathway is not a major mRNA export route in Saccharomyces cerevisiae. Neville, M. and Rosbash, M. EMBO J 18:3746-3756.
  • Identification of eight proteins that cross-link to pre-mRNA in the yeast commitment complex. Zhang, D. and Rosbash, M. Genes Dev 13:581-592.
  • TIMELESS-dependent positive and negative autoregulation in the Drosophila circadian clock. Suri, V., Lanjuin, A., Rosbash, M. EMBO J 18:675-686.

1998up-arrow-25w
  • The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Stanewsky, R., Kaneko, M., Emery, P., Beretta, B., Wager-Smith, K., Kay, S.A., Rosbash ,M., Hall, J.C. Cell 95:681-692.
  • CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Emery, P., So, W.V., Kaneko, M., Hall, J.C., Rosbash, M. Cell 95:669-679.
  • Nuclear RNA export. Stutz, F. and Rosbash, M. Genes Dev 12:3303-3319.
  • The timSL mutant affects a restricted portion of the Drosophila melanogaster circadian cycle. Rutila, J.E., Maltseva, O., Rosbash, M. J. Biol. Rhythms 13:380-392.
  • The KH domain of the branchpoint sequence binding protein determines specificity for the pre-mRNA branchpoint sequence. Berglund, J.A., Fleming, M.L., Rosbash, M. RNA 4:998-1006.
  • Synthetic lethal/enhancer screening to identify snRNA:protein and protein:protein interactions in yeast pre-mRNA splicing. Stutz, F., Tang, J., Rosbash, M. RNA-Protein Interactions: A Practical Approach. (ed. Smith, C.) Ch 6:161-182.
  • Evidence that the TIM light response is relevant to light-induced phase shifts in Drosophila melanogaster. Suri, V., Qian, Z., Hall, J.C., Rosbash, M. Neuron 21:225-234.
  • Why the rat-1 fibroblast should replace the SCN as the in vitro model of choice. Rosbash, M. Cell 93:917-919.
  • A comprehensive biochemical and genetic analysis of the yeast U1 snRNP reveals five novel proteins. Gottschalk, A., Tang, J., Puig, O., Salgado, J., Neubauer, G., Colot, H.V., Mann, M., Seraphin, B., Rosbash, M., Luhrmann, R., Fabrizio, P. RNA 4:374-393.
  • CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Rutila, J.E., Suri, V., Le, M., So, W.V., Rosbash, M., Hall, J.C. Cell 93:805-814.
  • A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Allada, R., White, N.E., So, W.V., Hall, J.C., Rosbash, M. Cell 93:791-804.
  • Molecular coevolution within a Drosophila clock gene. Peixoto, A.A., Hennessy, J.M., Townson, I., Hasan, G., Rosbash, M., Costa, R., Kyriacou, C.P. PNAS 95:4475-4480.
  • A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. Berglund, J.A., Abovich, N., Rosbash, M. Genes Dev 12:858-867.

1997up-arrow-25w
  • Post-transcriptional regulation contributes to Drosophila clock gene mRNA cycling. So WV and Rosbash M. EMBO J 16:7146-7155.
  • The importin-beta family member Crm1p bridges the interaction between Rev and the nuclear pore complex during nuclear export. Neville M, Stutz F, Lee L, Davis LI, Rosbash M. Curr.Biol. 7 :767-775.
  • The yeast nucleoporin rip1p contributes to multiple export pathways with no essential role for its FG-repeat region. Stutz F, Kantor J, Zhang D, McCarthy T, Neville M, Rosbash M. Genes Dev. 11:2857-2868.
  • Identification and characterization of a yeast homolog of U1 snRNP- specific protein C. Tang J, Abovich N, Fleming ML, Seraphin B, Rosbash M. EMBO J 16:4082-4091.
  • A new gene encoding a putative transcription factor regulated by the Drosophila circadian clock. Rouyer F, Rachidi M, Pikielny C, Rosbash M. EMBO J 16:3944-3954.
  • The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Berglund JA, Chua K, Abovich N, Reed R, Rosbash M. Cell 89:781-787.
  • Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Abovich N and Rosbash M. Cell 89:403-412.
  • Circadian cycling of a PERIOD-beta-galactosidase fusion protein in Drosophila: evidence for cyclical degradation. Dembinska ME, Stanewsky R, Hall JC, Rosbash M. J Biol.Rhythms 12:157-172.
  • A dynamic in vivo view of the HIV-I Rev-RRE interaction. Charpentier B, Stutz F, Rosbash M. J Mol.Biol. 266:950-962.
  • A high affinity binding site for the HIV-1 nucleocapsid protein. Berglund JA, Charpentier B, Rosbash M. Nucleic Acids Res. 25:1042-1049.
  • Temporal and spatial expression patterns of transgenes containing increasing amounts of the Drosophila clock gene period and a lacZ reporter: mapping elements of the PER protein involved in circadian cycling. Stanewsky R, Frisch B, Brandes C, Hamblen-Coyle MJ, Rosbash M, Hall JC. J Neurosci. 17:676-696.

1996up-arrow-25w
  • Molecular Control of Circadian Rhythms. Rosbash M, Rutila J, Zeng H. In Circadian Organization and Oscillatory Coupling (eds. Hiroshige, T., and Honma, K.-I.), Ch. 2, pp. 25-38. Hokkaido University Press: Sapporo
  • Effect of constant light and circadian entrainment of perS flies: evidence for light-mediated delay of the negative feedback loop in Drosophila. Marrus SB, Zeng H, Rosbash M. EMBO J 15:6877-6886.
  • Yeast pre-mRNA is composed of two populations with distinct kinetic properties. Elliott DJ and Rosbash M. Exp.Cell Res. 229:181-188.
  • A role for nucleoporin FG repeat domains in export of human immunodeficiency virus type 1 Rev protein and RNA from the nucleus. Stutz F, Izaurralde E, Mattaj IW, Rosbash M. MCB 16:7144-7150.
  • The timSL mutant of the Drosophila rhythm gene timeless manifests allele-specific interactions with period gene mutants. Rutila JE, Zeng H, Le M, Curtin KD, Hall JC, Rosbash M. Neuron 17:921-929.
  • Mixed mechanisms in yeast pre-mRNA splicing? Rosbash M. Cell 87:357-359.
  • Characterization of yeast U1 snRNP A protein: identification of the N- terminal RNA binding domain (RBD) binding site and evidence that the C- terminal RBD functions in splicing. Tang J and Rosbash M. RNA 2:1058-1070.
  • The yeast splicing factor Mud13p is a commitment complex component and corresponds to CBP20, the small subunit of the nuclear cap-binding complex. Colot HV, Stutz F, Rosbash M. Genes Dev. 10 :1699-1708.
  • Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly. Charpentier B and Rosbash M. RNA 2:509-522.
  • Identification and characterization of a yeast gene encoding the U2 small nuclear ribonucleoprotein particle B” protein. Tang J, Abovich N, Rosbash M. Mol.Cell Biol. 16:2787-2795.
  • A light-entrainment mechanism for the Drosophila circadian clock. Zeng H, Qian Z, Myers MP, Rosbash M. Nature 380:129-135.
  • A Drosophila circadian clock. Rosbash M, Allada R, Dembinska M, Guo WQ, Le M, Marrus S, Qian Z, Rutila J, Yaglom J, Zeng H. Cold Spring Harb.Symp.Quant.Biol. 61:265-278

1995up-arrow-25w
  • Spatial consequences of defective processing of specific yeast mRNAs revealed by fluorescent in situ hybridization. Long RM, Elliott DJ, Stutz F, Rosbash M, Singer RH. RNA 1:1071-1078.
  • Molecular control of circadian rhythms. Rosbash M. Curr.Opin.Genet.Dev. 5:662-668.
  • Suppression of PERIOD protein abundance and circadian cycling by the Drosophila clock mutation timeless. Price JL, Dembinska ME, Young MW, Rosbash M. EMBO J 14:4044-4049.
  • Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 Rev protein in yeast. Stutz F, Neville M, Rosbash M. Cell 82:495-506.
  • RNA structural patterns and splicing: molecular basis for an RNA-based enhancer. Libri D, Stutz F, McCarthy T, Rosbash M. RNA 1:425-436.
  • PER protein interactions and temperature compensation of a circadian clock in Drosophila. Huang ZJ, Curtin KD, Rosbash M. Science 267:1169-1172.
  • Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Curtin KD, Huang ZJ, Rosbash M. Neuron 14:365-372.

1994up-arrow-25w
  • A functional interaction between Rev and yeast pre-mRNA is related to splicing complex formation. Stutz F and Rosbash M. EMBO J 13:4096-4104.
  • Constitutive overexpression of the Drosophila period protein inhibits period mRNA cycling. Zeng H, Hardin PE, Rosbash M. EMBO J 13:3590-3598.
  • mRNA nuclear export. Elliott DJ, Stutz F, Lescure A, Rosbash M. Curr.Opin.Genet.Dev. 4:305-309.
  • The yeast MUD2 protein: an interaction with PRP11 defines a bridge between commitment complexes and U2 snRNP addition. Abovich N, Liao XC, Rosbash M. Genes Dev. 8:843-854.
  • Temporal phosphorylation of the Drosophila period protein. Edery I, Zwiebel LJ, Dembinska ME, Rosbash M. PNAS 91:2260-2264.
  • A promoterless period gene mediates behavioral rhythmicity and cyclical per expression in a restricted subset of the Drosophila nervous system. Frisch B, Hardin PE, Hamblen-Coyle MJ, Rosbash M, Hall JC. Neuron 12:555-570.
  • Phase shifting of the circadian clock by induction of the Drosophila period protein. Edery I, Rutila JE, Rosbash M. Science 263:237-240.
  • Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Pikielny CW, Hasan G, Rouyer F, Rosbash M. Neuron 12:35-49.

1993up-arrow-25w
  • Transfer of dye among salivary gland cells is not affected by genetic variations of the period clock gene in Drosophila melanogaster. Flint, K. K., Rosbash, M., and Hall, J. C. J Membr.Biol. 136:333-342.
  • RNA travel: tracks from DNA to cytoplasm. Rosbash, M. and Singer, R. H. Cell 75:399-401.
  • Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicing. Goguel, V., Wang, Y., and Rosbash, M. Mol.Cell Biol. 13:6841-6848.
  • Stabilization and ribosome association of unspliced pre-mRNAs in a yeast. He, F., Peltz, S. W., Donahue, J. L., Rosbash, M., and Jacobson, A. Proc.Natl.Acad.Sci.U.S.A 90:7034-7038.
  • PAS is a dimerization domain common to Drosophila period and several transcription factors. Huang, Z. J., Edery, I., and Rosbash, M. Nature 364:259-262.
  • Oscillating molecules and how they move circadian clocks across evolutionary boundaries. Hall, J. C. and Rosbash, M. Proc.Natl.Acad.Sci.U.S.A 90:5382-5383.
  • U1 small nuclear ribonucleoprotein particle-protein interactions are revealed in Saccharomyces cerevisiae by in vivo competition assays. Stutz, F., Liao, X. C., and Rosbash, M. Mol.Cell Biol. 13:2126-2133.
  • Splice site choice and splicing efficiency are positively influenced by pre-mRNA intramolecular base pairing in yeast. Goguel, V. and Rosbash, M. Cell 72:893-901
  • An enhancer screen identifies a gene that encodes the yeast U1 snRNP A protein: implications for snRNP protein function in pre-mRNA splicing. Liao, X. C., Tang, J., and Rosbash, M. Genes Dev. 7:419-428
  • Circadian cycling in the levels of protein and mRNA from Drosophila melanogaster’s period gene. Hardin, P.E., Hall, J.C. and Rosbash, M. In Molecular Genetics of Biological Rhythms (M.W. Young, ed.), pp. 155-170. Marcel Dekker: N.Y.

1992up-arrow-25w
  • Yeast pre-mRNA splicing. Rymond, B.C. and Rosbash, M. In The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression (eds. Broach, J.R., Pringle, J. and Jones, E.W.), Vol. II, pp. 143-192. Cold Spring Harbor Laboratory Press: N.Y. (1992).
  • Circadian oscillations in period gene mRNA levels are transcriptionally regulated. Hardin, P. E., Hall, J. C., and Rosbash, M. Proc.Natl.Acad.Sci.U.S.A 89:11711-11715 (1992).
  • Drosophila homologs of two mammalian intracellular Ca2+-release channels: identification and expression patterns of the inositol 1,4,5- triphosphate and the ryanodine receptor genes. Hasan, G. and Rosbash, M. Development 116:967-975 (1992).
  • Defects in mRNA 3′-end formation, transcription initiation, and mRNA transport associated with the yeast mutation prp20: possible coupling of mRNA processing and chromatin structure. Forrester, W., Stutz, F., Rosbash, M., and Wickens, M. Genes Dev. 6:1914-1926 (1992).
  • A yeast splicing factor is localized in discrete subnuclear domains. Elliott, D. J., Bowman, D. S., Abovich, N., Fay, F. S., and Rosbash, M. EMBO J 11:3731-3736 (1992).
  • The Drosophila period gene and dye coupling in larval salivary glands: a re-evaluation. Siwicki, K.K., Flint, K.F., Hall, J.C., Rosbash, M. and Spray, D.C. Biol.Bull. 183:340-341 (1992).
  • Behavior of period-altered circadian rhythm mutants of Drosophila in light:dark cycles. Hamblen-Coyle, M.J., Wheeler, D.A., Rutila, J.E., Rosbash, M. and Hall, J.C. J.Insect Behav. 5:417-446 (1992).
  • Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells’ influence on circadian behavioral rhythms. Ewer, J., Frisch, B., Hamblen-Coyle, M. J., Rosbash, M., and Hall, J. C. J Neurosci. 12:3321-3349 (1992).
  • Mapping the clock rhythm mutation to the period locus of Drosophila melanogaster by germline transformation. Dushay, M. S., Rosbash, M., and Hall, J. C. J Neurogenet. 8:173-179 (1992).
  • Requirements for U2 snRNP addition to yeast pre-mRNA. Liao, X. C., Colot, H. V., Wang, Y., and Rosbash, M. Nucleic Acids Res. 20:4237-4245 (1992).
  • The period gene encodes a predominantly nuclear protein in adult Drosophila. Liu, X., Zwiebel, L. J., Hinton, D., Benzer, S., Hall, J. C., and Rosbash, M. J Neurosci. 12:2735-2744 (1992).
  • The analysis of new short-period circadian rhythm mutants suggests features of D. melanogaster period gene function. Rutila, J. E., Edery, I., Hall, J. C., and Rosbash, M. J Neurogenet. 8:101-113 (1992).
  • Behavioral and molecular analyses suggest that circadian output is disrupted by disconnected mutants in D. melanogaster. Hardin, P. E., Hall, J. C., and Rosbash, M. EMBO J 11:1-6 (1992).

1991up-arrow-25w
  • U1 snRNP can influence 3′-splice site selection as well as 5′-splice site selection. Goguel, V., Liao, X. L., Rymond, B. C., and Rosbash, M. Genes Dev. 5:1430-1438 (1991).
  • Genetic depletion indicates a late role for U5 snRNP during in vitro spliceosome assembly. Seraphin, B., Abovich, N., and Rosbash, M. Nucleic Acids Res. 19:3857-3860 (1991).
  • The strength and periodicity of D. melanogaster circadian rhythms are differentially affected by alterations in period gene expression. Liu, X., Yu, Q. A., Huang, Z. S., Zwiebel, L. J., Hall, J. C., and Rosbash, M. Neuron 6:753-766 (1991).
  • A post-transcriptional mechanism contributes to circadian cycling of a per-beta-galactosidase fusion protein. Zwiebel, L. J., Hardin, P. E., Liu, X., Hall, J. C., and Rosbash, M. Proc.Natl.Acad.Sci.U.S.A 88:3882-3886 (1991).
  • Who’s on first? The U1 snRNP-5′ splice site interaction and splicing. Rosbash, M. and Seraphin, B. Trends Biochem.Sci. 16 :187-190 (1991).
  • The yeast branchpoint sequence is not required for the formation of a stable U1 snRNA-pre-mRNA complex and is recognized in the absence of U2 snRNA. Seraphin, B. and Rosbash, M. EMBO J 10:1209-1216 (1991).
  • Circadian oscillations in protein and mRNA levels of the period gene of Drosophila melanogaster. Zwiebel, L. J., Hardin, P. E., Hall, J. C., and Rosbash, M. Biochem.Soc.Trans. 19:533-537 (1991).
  • Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster. Wheeler, D. A., Kyriacou, C. P., Greenacre, M. L., Yu, Q., Rutila, J. E., Rosbash, M., and Hall, J. C. Science 251:1082-1085 (1991).
  • Cloning of the two essential yeast genes, PRP6 and PRP9, and their rapid mapping, disruption and partial sequencing using a linker insertion strategy. Legrain, P., Chapon, C., Schwob, E., Martin, R., Rosbash, M., and Dujon, B. Mol.Gen.Genet. 225:199-202 (1991).

1990up-arrow-25w
  • The yeast PRP6 gene encodes a U4/U6 small nuclear ribonucleoprotein particle (snRNP) protein, and the PRP9 gene encodes a protein required for U2 snRNP binding. Abovich, N., Legrain, P., and Rosbash, M. Mol.Cell Biol. 10:6417-6425 (1990).
  • Exon mutations uncouple 5′ splice site selection from U1 snRNA pairing. Seraphin, B. and Rosbash, M. Cell 63:619-629 (1990).
  • Requirement for period gene expression in the adult and not during development for locomotor activity rhythms of imaginal Drosophila melanogaster. Ewer, J., Hamblen-Coyle, M., Rosbash, M., and Hall, J. C. J Neurogenet. 7:31-73 (1990).
  • Universally conserved and yeast-specific U1 snRNA sequences are important but not essential for U1 snRNP function. Liao, X. L., Kretzner, L., Seraphin, B., and Rosbash, M. Genes Dev. 4:1766-1774 (1990).
  • Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. Zerr, D. M., Hall, J. C., Rosbash, M., and Siwicki, K. K. J Neurosci. 10:2749-2762 (1990).
  • Genetic and molecular analysis of neural development and behaviour in Drosophila. Hall, J.C., Kulkarni, S.J., Kyriacou, C.P., Yu, Q. and Rosbash, M. In Developmental Behaviour Genetics (M.E. Hahn, J. Hewitt, N.D. Henderson, and R. Benno, eds.), pp. 100-112. Oxford University Press: New York (1990).
  • Phenotypic and genetic analysis of Clock, a new circadian rhythm mutant in Drosophila melanogaster [published erratum appears in Genetics 1990 Oct;126(2):477]. Dushay, M. S., Konopka, R. J., Orr, D., Greenacre, M. L., Kyriacou, C. P., Rosbash, M., and Hall, J. C. Genetics 125:557-578 (1990).
  • Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Hardin, P. E., Hall, J. C., and Rosbash, M. Nature 343:536-540 (1990).
  • Saccharomyces cerevisiae U1 small nuclear RNA secondary structure contains both universal and yeast-specific domains. Kretzner, L., Krol, A., and Rosbash, M. Proc.Natl.Acad.Sci.U.S.A 87:851-855 (1990).
  • Contribution of U1 snRNA structural domains to U1 snRNP function. Liao, X. L., Kretzner, L., Seraphin, B., and Rosbash, M. Mol.Biol.Rep. 14:143 (1990).
  • Measurement and analysis of yeast pre-mRNA sequence contribution to splicing efficiency. Rymond, B. C., Pikielny, C., Seraphin, B., Legrain, P., and Rosbash, M. Methods Enzymol. 181:122-147 (1990).

1989up-arrow-25w
  • Expression of a Drosophila mRNA is under circadian clock control during pupation. Lorenz, L. J., Hall, J. C., and Rosbash, M. Development 107:869-880 (1989).
  • Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing. Seraphin, B. and Rosbash, M. Cell 59:349-358 (1989).
  • Mutational analysis of the interactions between U1 small nuclear RNA and pre-mRNA of yeast. Seraphin, B. and Rosbash, M. Gene 82:145-151 (1989).
  • The period gene and biological rhythms in Drosophila. Rosbash, M., Colot, H.V., Ewer, J., Liu, X., Petersen, G., Siwicki, K., Yu, Q., Zwiebel, L. and Hall, J.C. Molecular Neurobiology Proceedings of the First NIMH Conference (S. Zalcman and R. Scheller, Eds.), pp. 128-134, DHHS Publication No. (ADM) 89-1619 (1989).
  • The molecular biology of circadian rhythms. Rosbash, M. and Hall, J. C. Neuron 3:387-398 (1989).
  • A new mutation at the period locus of Drosophila melanogaster with some novel effects on circadian rhythms. Hamblen-Coyle, M., Konopka, R. J., Zwiebel, L. J., Colot, H. V., Dowse, H. B., Rosbash, M., and Hall, J. C. J Neurogenet. 5:229-256 (1989).
  • An antibody to the Drosophila period protein recognizes circadian pacemaker neurons in Aplysia and Bulla. Siwicki, K. K., Strack, S., Rosbash, M., Hall, J. C., and Jacklet, J. W. Neuron 3:51-58 (1989).
  • Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Legrain, P. and Rosbash, M. Cell 57:573-583 (1989).
  • Sequence requirements for branch formation in a group II self-splicing intron. Altura, R., Rymond, B., Seraphin, B., and Rosbash, M. Nucleic Acids Res. 17:335-354 (1989).
  • The disconnected visual system mutations in Drosophila melanogaster drastically disrupt circadian rhythms. Dushay, M. S., Rosbash, M., and Hall, J. C. J Biol.Rhythms 4:1-27 (1989).

1988up-arrow-25w
  • The period gene of Drosophila carries species-specific behavioral instructions. Petersen, G., Hall, J. C., and Rosbash, M. EMBO J 7:3939-3947 (1988).
  • Interspecific comparison of the period gene of Drosophila reveals large blocks of non-conserved coding DNA. Colot, H. V., Hall, J. C., and Rosbash, M. EMBO J 7:3929-3937 (1988).
  • Early commitment of yeast pre-mRNA to the spliceosome pathway. Legrain, P., Seraphin, B., and Rosbash, M. Mol.Cell Biol. 8:3755-3760 (1988).
  • A U1 snRNA:pre-mRNA base pairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5′ cleavage site. Seraphin, B., Kretzner, L., and Rosbash, M. EMBO J 7:2533-2538 (1988).
  • An inducible promoter fused to the period gene in Drosophila conditionally rescues adult per-mutant arrhythmicity. Ewer, J., Rosbash, M., and Hall, J. C. Nature 333:82-84 (1988).
  • A chemical modification/interference study of yeast pre-mRNA spliceosome assembly and splicing. Raymond, B. C. and Rosbash, M. Genes Dev. 2:428-439 (1988).
  • Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Siwicki, K. K., Eastman, C., Petersen, G., Rosbash, M., and Hall, J. C. Neuron 1:141-150 (1988).
  • Spatial and temporal expression of the period gene in Drosophila melanogaster. Liu, X., Lorenz, L., Yu, Q. N., Hall, J. C., and Rosbash, M. Genes Dev. 2:228-238 (1988).
  • Mutations and molecules influencing biological rhythms. Hall, J. C. and Rosbash, M. Annu.Rev.Neurosci. 11:373-393 (1988).

1987up-arrow-25w
  • Genetics and molecular biology of rhythms. Hall, J. C. and Rosbash, M. Bioessays 7:108-112 (1987).
  • S. cerevisiae U1 RNA is large and has limited primary sequence homology to metazoan U1 snRNA. Kretzner, L., Rymond, B. C., and Rosbash, M. Cell 50:593-602 (1987).
  • A novel role for the 3′ region of introns in pre-mRNA splicing of Saccharomyces cerevisiae. Rymond, B. C., Torrey, D. D., and Rosbash, M. Genes Dev. 1:238-246 (1987).
  • Behaviour modification by in vitro mutagenesis of a variable region within the period gene of Drosophila. Yu, Q., Colot, H. V., Kyriacou, C. P., Hall, J. C., and Rosbash, M. Nature 326:765-769 (1987).
  • A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Citri, Y., Colot, H. V., Jacquier, A. C., Yu, Q., Hall, J. C., Baltimore, D., and Rosbash, M. Nature 326:42-47 (1987).
  • Molecular mapping of point mutations in the period gene that stop or speed up biological clocks in Drosophila melanogaster. Yu, Q., Jacquier, A. C., Citri, Y., Hamblen, M., Hall, J. C., and Rosbash, M. Proc.Natl.Acad.Sci.U.S.A 84:784-788 (1987).
  • Searching for clones with open reading frames. Gray, M. R., Mazzara, G. P., Reddy, P., and Rosbash, M. Methods Enzymol. 154:129-156 (1987).
  • Genetic and molecular analysis of biological rhythms. Hall, J. C. and Rosbash, M. J Biol.Rhythms 2:153-178 (1987).

1986up-arrow-25w
  • Differential nuclease sensitivity identifies tight contacts between yeast pre-mRNA and spliceosomes. Rymond, B. C. and Rosbash, M. EMBO J 5:3517-3523 (1986).
  • Blastoderm-specific and read-through transcription of the sry alpha gene transformed into the Drosophila genome. Vincent, A., Colot, H. V., and Rosbash, M. Dev.Biol. 118:480-487 (1986).
  • Efficient trans-splicing of a yeast mitochondrial RNA group II intron implicates a strong 5′ exon-intron interaction. Jacquier, A. and Rosbash, M. Science 234:1099-1104 (1986).
  • Electrophoresis of ribonucleoproteins reveals an ordered assembly pathway of yeast splicing complexes. Pikielny, C. W., Rymond, B. C., and Rosbash, M. Nature 324:341-345 (1986).
  • Germ-line transformation involving DNA from the period locus in Drosophila melanogaster: overlapping genomic fragments that restore circadian and ultradian rhythmicity to per0 and per- mutants. Hamblen, M., Zehring, W. A., Kyriacou, C. P., Reddy, P., Yu, Q., Wheeler, D. A., Zwiebel, L. J., Konopka, R. J., Rosbash, M., and Hall, J. C. J Neurogenet. 3:249-291 (1986).
  • Embryonic expression of the period clock gene in the central nervous system of Drosophila melanogaster. James, A. A., Ewer, J., Reddy, P., Hall, J. C., and Rosbash, M. EMBO J 5:2313-2320 (1986).
  • RNA splicing and intron turnover are greatly diminished by a mutant yeast branch point. Jacquier, A. and Rosbash, M. Proc.Natl.Acad.Sci.U.S.A 83:5835-5839 (1986).
  • The period clock locus of D. melanogaster codes for a proteoglycan. Reddy, P., Jacquier, A. C., Abovich, N., Petersen, G., and Rosbash, M. Cell 46:53-61 (1986).
  • Specific small nuclear RNAs are associated with yeast spliceosomes. Pikielny, C. W. and Rosbash, M. Cell 45:869-877 (1986).
  • Alternative branch points are selected during splicing of a yeast pre- mRNA in mammalian and yeast extracts. Ruskin, B., Pikielny, C. W., Rosbash, M., and Green, M. R. Proc.Natl.Acad.Sci.U.S.A 83:2022-2026 (1986).

1985up-arrow-25w
  • Posttranscriptional regulation and assembly into ribosomes of a Saccharomyces cerevisiae ribosomal protein-beta-galactosidase fusion. Gritz, L., Abovich, N., Teem, J. L., and Rosbash, M. Mol.Cell Biol. 5:3436-3442 (1985).
  • A quantitative analysis of the effects of 5′ junction and TACTAAC box mutants and mutant combinations on yeast mRNA splicing. Jacquier, A., Rodriguez, J. R., and Rosbash, M. Cell 43:423-430 (1985).
  • Effect of RP51 gene dosage alterations on ribosome synthesis in Saccharomyces cerevisiae. Abovich, N., Gritz, L., Tung, L., and Rosbash, M. Mol.Cell Biol. 5:3429-3435 (1985).
  • Sequence and structure of the serendipity locus of Drosophila melanogaster. A densely transcribed region including a blastoderm- specific gene. Vincent, A., Colot, H. V., and Rosbash, M. J Mol.Biol. 186:149-166 (1985).
  • Biological clocks in Drosophila: finding the molecules that make them tick. Rosbash, M. and Hall, J. C. Cell 43:3-4 (1985).
  • Cleavage of 5′ splice site and lariat formation are independent of 3′ splice site in yeast mRNA splicing. Rymond, B. C. and Rosbash, M. Nature 317:735-737 (1985).
  • A Drosophila Minute gene encodes a ribosomal protein. Kongsuwan, K., Yu, Q., Vincent, A., Frisardi, M. C., Rosbash, M., Lengyel, J. A., and Merriam, J. Nature 317:555-558 (1985).
  • mRNA splicing efficiency in yeast and the contribution of nonconserved sequences. Pikielny, C. W. and Rosbash, M. Cell 41 :119-126 (1985).

1984up-arrow-25w
  • Accumulation and behavior of mRNA during oogenesis and early embryogenesis of Xenopus laevis. Hyman, L.E., Colot, H.V. and Rosbash, M. In Molecular Aspects of Early Development (G.M. Malacinski and W. Klein eds.), Louisville ASZ Symposium, pp. 253-266. Plenum Press: New York (1984).
  • In vivo characterization of yeast mRNA processing intermediates. Rodriguez, J. R., Pikielny, C. W., and Rosbash, M. Cell 39:603-610 (1984).
  • P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Zehring, W. A., Wheeler, D. A., Reddy, P., Konopka, R. J., Kyriacou, C. P., Rosbash, M., and Hall, J. C. Cell 39:369-376 (1984).
  • A comparison of yeast ribosomal protein gene DNA sequences. Teem, J.L., Abovich, N., Kaufer, N.F., Schwindinger, W.F., Warner, J.R., Levy, A., Woolford, J., Leer, R.J., van Raamsdonk-Duin, M.M.C., Mager, W.H., Planta, R.J., Schultz, L., Friesen, J.D. and Rosbash, M. Nucl.Acids Res. 12:8295-8312 (1984).
  • Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Reddy, P., Zehring, W. A., Wheeler, D. A., Pirrotta, V., Hadfield, C., Hall, J. C., and Rosbash, M. Cell 38:701-710 (1984).
  • Two genes for ribosomal protein 51 of Saccharomyces cerevisiae complement and contribute to the ribosomes. Abovich, N. and Rosbash, M. Mol.Cell Biol. 4:1871-1879 (1984).
  • Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene. O’Connell, P. O. and Rosbash, M. Nucleic Acids Res. 12:5495-5513 (1984).
  • Drosophila maternal and embryo mRNAs transcribed from a single transcription unit use alternate combinations of exons. Vincent, A., O’Connell, P., Gray, M. R., and Rosbash, M. EMBO J 3:1003-1013 (1984).

1983up-arrow-25w
  • A comparison of yeast and metazoan mRNA splicing. Rosbash, M., Pikielny, C.W., Rodriguez, J.R. and Teem, J.L. In Gene Expression in Yeast (M. Korhola and E. Vaisanen, eds.), Foundation for Biotechnical and Industrial Fermentation Research 1, 31-42 (1983).
  • Evidence for the biochemical role of an internal sequence in yeast nuclear mRNA introns: implications for U1 RNA and metazoan mRNA splicing. Pikielny, C. W., Teem, J. L., and Rosbash, M. Cell 34:395-403 (1983).
  • Expression of a beta-galactosidase gene containing the ribosomal protein 51 intron is sensitive to the rna2 mutation of yeast. Teem, J. L. and Rosbash, M. Proc.Natl.Acad.Sci.U.S.A 80:4403-4407 (1983).
  • The rna2 mutation of yeast affects the processing of actin mRNA as well as ribosomal protein mRNAs. Teem, J. L., Rodriguez, J. R., Tung, L., and Rosbash, M. Mol.Gen.Genet. 192:101-103 (1983).

1982up-arrow-25w
  • Open reading frame cloning: identification, cloning, and expression of open reading frame DNA. Gray, M. R., Colot, H. V., Guarente, L., and Rosbash, M. Proc.Natl.Acad.Sci.U.S.A 79:6598-6602 (1982).
  • Some somatic sequences are absent or exceedingly rare in Xenopus oocyte RNA. Schafer, U., Golden, L., Hyman, L. E., Colot, H. V., and Rosbash, M. Dev.Biol. 94:87-92 (1982).
  • Behavior of individual maternal pA+ RNAs during embryogenesis of Xenopus laevis. Colot, H. V. and Rosbash, M. Dev.Biol. 94:79-86 (1982).
  • Further evidence that the rna2 mutation of Saccharomyces cerevisiae affects mRNA processing. Bromley, S., Hereford, L., and Rosbash, M. Mol.Cell Biol. 2:1205-1211 (1982).
  • Sporulation and rna2 lower ribosomal protein mRNA levels by different mechanisms in Saccharomyces cerevisiae. Kraig, E., Haber, J. E., and Rosbash, M. Mol.Cell Biol. 2:1199-1204 (1982).

1981up-arrow-25w
  • DNase I hypersensitive sites of the chromatin for Drosophila melanogaster ribosomal protein 49 gene. Wong, Y. C., O’Connell, P., Rosbash, M., and Elgin, S. C. Nucleic Acids Res. 9:6749-6762 (1981).
  • RNAs in Xenopus oocytes. In The Role of RNA in Development and Reproduction (M.C. Nin and H.H. Chuang eds.), pp. 583-596. Science Press, Beijing: China (1981).
  • Ribosomal protein mRNAs increase dramatically during Xenopus development. Weiss, Y. C., Vaslet, C. A., and Rosbash, M. Dev.Biol. 87:330-339 (1981).
  • A comparison of Xenopus laevis oocyte and embryo mRNA. Rosbash, M. Dev.Biol. 87:319-329 (1981).
  • Ribosomal protein genes rp 39(10 – 78), rp 39(11 – 40), rp 51, and rp 52 are not contiguous to other ribosomal protein genes in the Saccharomyces cerevisiae genome. Woolford, J. L., Jr. and Rosbash, M. Nucleic Acids Res. 9:5021-5036 (1981).
  • The effect of temperature-sensitive RNA mutants on the transcription products from cloned ribosomal protein genes of yeast. Rosbash, M., Harris, P. K., Woolford, J. L., Jr., and Teem, J. L. Cell 24:679-686 (1981).
  • Determination of cellular RNA concentrations by electron microscopy of R loop-containing DNA. Kaback, D. B., Rosbash, M., and Davidson, N. Proc.Natl.Acad.Sci.U.S.A 78:2820-2824 (1981).

1980up-arrow-25w
  • Accumulation of individual pA+ RNAs during oogenesis of Xenopus laevis. Golden, L., Schafer, U., and Rosbash, M. Cell 22:835-844 (1980).
  • Isolation and mapping of a cloned ribosomal protein gene of Drosophila melanogaster. Vaslet, C. A., O’Connell, P., Izquierdo, M., and Rosbash, M. Nature 285:674-676 (1980).

1979up-arrow-25w
  • Isolation of yeast histone genes H2A and H2B. Hereford, L., Fahrner, K., Woolford, J., Jr., Rosbash, M., and Kaback, D. B. Cell 18:1261-1271 (1979).
  • Isolation of cloned DNA sequences containing ribosomal protein genes from Saccharomyces cerevisiae. Woolford, J. L., Jr., Hereford, L. M., and Rosbash, M. Cell 18:1247-1259 (1979).
  • Modification of a DNA cloning vehicle to give a high strand-separation melting temperature. White, R. L. and Rosbash, M. Gene 7:97-107 (1979).
  • The use of R-looping for structural gene identification and mRNA purification. Woolford, J. L., Jr. and Rosbash, M. Nucleic Acids Res. 6:2483-2497 (1979).
  • R-looping and structural gene indentification of recombinant DNA. Rosbash, M., Blank, D., Fahrner, K., Hereford, L., Ricciardi, R., Roberts, B., Ruby, S., and Woolford, J. Methods Enzymol. 68:454-469 (1979).

1978up-arrow-25w
  • Analysis of Xenopus laevis ovary and somatic cell polyadenylated RNA by molecular hybridization. Perlman, S. and Rosbash, M. Dev.Biol. 63:197-212 (1978).

1977up-arrow-25w
  • The synthesis of high yields of full-length reverse transcripts of globin mRNA. Friedman, E. Y. and Rosbash, M. Nucleic Acids Res. 4:3455-3471 (1977).
  • Presence of tadpole and adult globin RNA sequences in oocytes of Xenopus laevis. Perlman, S.M., Ford, P.J. and Rosbash, M. Proc.Natl.Acad.Sci.USA 74:3835-3839 (1977).
  • Very long-lived messenger RNA in ovaries of Xenopus laevis. Ford, P. J., Mathieson, T., and Rosbash, M. Dev.Biol. 57:417-426 (1977).
  • Regulation of a set of abundant mRNA sequences. Hereford, L. M. and Rosbash, M. Cell 10:463-467 (1977).
  • Number and distribution of polyadenylated RNA sequences in yeast. Hereford, L. M. and Rosbash, M. Cell 10:453-462 (1977).

1975up-arrow-25w
  • Organization and expression of eukaryote DNA. Bishop, J. O., Campo, M. S., Izquierdo, M., Hastie, N. D., Rosbash, M., and Morton, J. G. In: Biochemistry of the cell nucleus (eds. E.J. Hidvegi, J. Sumegi, and P. Venetianer). FEBS Symp. 33:393-402 (1975).
  • Conservation of cytoplasmic poly (A)-containing RNA in mouse and rat. Rosbash, M., Campo, M. S., and Gummerson, K. S. Nature 258:682-686 (1975).

1974up-arrow-25w
  • Analysis of the C-value paradox by molecular hybridization. Rosbash, M., Ford, P. J., and Bishop, J. O. Proc.Natl.Acad.Sci.U.S.A 71:3746-3750 (1974).
  • Three abundance classes in HeLa cell messenger RNA. Bishop, J. O., Morton, J. G., Rosbash, M., and Richardson, M. Nature 250:199-204 (1974).
  • Polyadenylic acid-containing RNA in Xenopus laevis oocytes. Rosbash, M. J Mol.Biol. 85:87-101 (1974).
  • Polynucleotide sequences in eukaryotic DNA and RNA that form ribonuclease-resistant complexes with polyuridylic acid. Bishop, J. O. and Rosbash, M. J Mol.Biol. 85:75-86 (1974).

1973up-arrow-25w
  • Reiteration frequency of duck haemoglobin genes. Bishop, J. O. and Rosbash, M. Nat.New Biol. 241:204-207 (1973).

1972up-arrow-25w
  • Complementarity between messenger RNA and nuclear RNA from HeLa cells. Stampfer, M., Rosbash, M., Huang, A. S., and Baltimore, D. Biochem.Biophys.Res.Commun. 49:217-224 (1972).
  • Formation of membrane-bound polyribosomes. Rosbash, M. J Mol.Biol. 65:413-422 (1972).
  • The precipitation of precursor tRNA in high salt. Rosbash, M. and Penman, S. Biochem.Biophys.Res.Commun. 46:1469-1475 (1972).

1971up-arrow-25w
  • Membrane-associated protein synthesis of mammalian cells. II. Isopycnic separation of membrane-bound polyribosomes. Rosbash, M. and Penman, S. J Mol.Biol. 59:243-253 (1971).
  • Membrane-associated protein synthesis of mammalian cells. I. The two classes of membrane-associated ribosomes. Rosbash, M. and Penman, S. J Mol.Biol. 59:227-241 (1971).

1970up-arrow-25w
  • Distinct RNA synthesis systems of the HeLa cell. Penman, S., Fan, H., Perlman, S., Rosbash, M., Weinberg, R. and Zylber, E. In Transcription of Genetic Material. Cold Spring Harbor Symposium on Quantitative Biology XXXV, pp. 561-575 (1970).
  • Messenger and heterogeneous nuclear RNA in HeLa cells: differential inhibition by cordycepin. Penman, S., Rosbash, M., and Penman, M. Proc.Natl.Acad.Sci.U.S.A 67:1878-1885 (1970).